Peninsular Florida Landscape Conservation Cooperative

Priority Resources – Web Workshop
March 22, 2016
Why are we here today?

The goals of these workshops are to:

• Review the draft PFLCC priority resources with a broad array of partners,

• Gather input to refine and finalize the priority resources,

• Develop a targeted list of subject matter experts for conservation target teams
The Landscape Conservation Cooperatives

- 22 individual, self-directed partnerships
- North American continent, Pacific Islands and the Caribbean

Applied conservation science partnerships:
- Federal agencies
- Regional organizations
- State agencies
- Tribes
- NGOs
- Private stakeholders
- Universities
- Other entities
They are designed to inform resource management decisions in an integrated fashion across landscapes at a broader scale than any individual partner’s responsibility.

The partnership considers landscape-scale stressors, including:

- climate change
- habitat fragmentation
- invasive species
- water scarcity

as it attempts to provide a vision for a landscape capable of sustaining healthy populations of fish, wildlife, plants and cultural resources.
Peninsular Florida Landscape Conservation Cooperative (PFLCC)

An applied conservation science partnership among local, state, and federal agencies, tribes, non-governmental organizations, universities, and other stakeholders to benefit fish and wildlife and associated habitats.

The function of the PFLCC is to facilitate landscape-level
1) planning,
2) design, and
3) implementation of conservation strategies for fish and wildlife species.
PFLCC Mission

“To foster landscape scale conservation to sustain natural and cultural resources for future generations”
PFLCC Steering Committee Organizations

The Nature Conservancy
FL Fish & Wildlife Conservation Commission
Family Lands Remember, LLC
U.S. Fish & Wildlife Service
National Parks Service (Everglades)
National Wildlife Refuge Association
Florida Natural Areas Inventory
SW FL Water Management District
FL Sea Grant Extension
FL Dept. of Ag. And Consumer Services
Southeast Aquatic Resources Partnership
Florida DOT
US Forest Service
Florida Forest Service
Nature Coast Biological Station
University of Florida
Florida Farm Bureau Federation
USAF
DOI: Bureau of Indian Affairs
Miccosukee Tribe of Indians of FL
The Conservation Fund
Plum Creek
Florida Forestry Association
NOAA
USGS
USDA NRCS
PFLCC Staff +

Coordinator: *Tim Breault*

Science Coordinator: *Steve Traxler*
Beth Stys

Communications (1/2 time): *Lisa Thompson*

Landowner Incentives: *Dave Hankla*

+Priority Resources project support: *Caroline Gorga (FWC)*
Identifying priority resources and establishing conservation targets is an essential part of the Ecological Planning component.
Define Limiting Factors

Identify Critical Areas

Identify and Implement Mgmt Strategies

Monitor

Identify Priority Resources

Develop Conservation Targets

Review/Validate Conservation Targets

Identify “gaps”
Identify Priority Resources

Monitor

Identify and Implement Mgmt Strategies

Identify Critical Areas

Define Limiting Factors

Develop Conservation Targets

Identify “gaps”

Review/Validate Conservation Targets

PFLCC Ecological Planning, Conservation Design, Research and Monitoring
PFLCC Ecological Planning, Conservation Design, Research and Monitoring

- Identify Priority Resources
- Monitor
- Develop Conservation Targets
- Identify and Implement Mgmt Strategies
- Identify Critical Areas
- Review/Validate Conservation Targets
- Identify “gaps”
- Define Limiting Factors
- Research
PFLCC Ecological Planning, Conservation Design, Research and Monitoring

Conservation Design

- Identify Priority Resources
- Monitor
- Develop Conservation Targets
- Review/Validate Conservation Targets
- Identify and Implement Mgmt Strategies
- Identify Critical Areas
- Define Limiting Factors
- Identify “gaps”
PFLCC Ecological Planning, Conservation Design, Research and Monitoring

Monitoring

- Identify and Implement Mgmt Strategies
- Identify Critical Areas
- Define Limiting Factors
- Identify Priority Resources
- Develop Conservation Targets
- Review/Validate Conservation Targets
- Identify “gaps”
PFLCC Ecological Planning, Conservation Design, Research and Monitoring

- Identify Priority Resources
- Develop Conservation Targets
- Review/Validate Conservation Targets
- Monitor
- Identify and Implement Mgmt Strategies
- Identify Critical Areas
- Define Limiting Factors
- Identify "gaps"
- Landscape level features
Florida’s Natural Resources

Florida’s State Wildlife Action Plan
A comprehensive wildlife conservation strategy
Defining Conservation Targets on a Landscape-scale

September 2015
Mission statement synthesis – PFLCC Partnership
Vision:

PFLCC is a valued resource for conservation design and delivery that supports a Florida landscape comprised of functional and interconnected ecosystems valued by citizens that contribute to regional and national conservation landscape connectivity.

Mission:

To foster landscape scale conservation to sustain natural and cultural resources for future generations.

PFLCC partner mission synthesis

Key components

- Connectivity
- Landscape sustainability, resiliency
- Mosaic of public, private lands
- Working landscapes
- Functional, sustainable ecosystems
- Maintenance of current conservation lands
- Water supply
- Restoration of natural hydrology
- Freshwater quantity, quality
- Coastal system resiliency, sustainability
- Public support for conservation
- Conservation ethic
- Ecosystem services
Priority resources are the set of biological, ecological, and cultural features and ecological processes collaboratively identified as most important, and are the focus of the PFLCC’s planning.

Priority resources should represent the most significant resources for the focus geography, embody the key components, and reflect the mission, vision, common interests, and values of the focus geography partners.
Development of Priority Resources

PFLCC Technical Team – by recommendation of PFLCC Steering Committee members
 • USFWS, FWC

 • State Wildlife Action Plan (SWAP) – serve as starting point to define priority resources (PFLCC Steering Committee)
 • Habitats in SWAP should be selected to best represent key components
 • Additional priority resources beyond SWAP may be necessary and should be included to completely represent key components
Characteristics of Priority Resources

- They are responsive to conservation actions
- They clearly relate to PFLCC key components
- Defined in a way that links to other classification systems (e.g., NatureServe)
- Defined in a way that links with other LCCs
- Each priority resource should have a limited number of conservation targets
- Conservation targets can cross-cut to multiple priority resources
- They need leadership buy-in, both top-down and bottom-up
- The Everglades watershed should be incorporated
- Working lands should be incorporated
- Human values is a potential component
- They should include the Everglades watershed
- The State Wildlife Action Plan will serve as the starting point to define priority resources
- Select the habitats in the State Wildlife Action Plan that best represent key components
The *Priority Resources* and Conservation Targets are the PFLCCs shared measures of conservation success.

- Use in biological planning and conservation design.
- Serve as a performance management tool that allows for collective landscape-scale conservation.
- Provide a focus for collaborative monitoring of environmental trends related to the quality and quantity of ecological and cultural resources.
- Encourage coordination to identify knowledge gaps and increase our understanding of ecological and cultural resources.
- Provide accountability and transparency to partners, constituents, and funders about conservation objectives and the necessary resources and time frames to achieve them.
Draft Priority Resources

• DRAFT list developed by Technical Team and approved by PFLCC Steering Committee

• Identified 12 priority resources:
 • 9 habitat based
 • 3 additional PRs, non-habitat based

 • High Pine and Scrub
 • Coastal Uplands
 • Pine Flatwoods and Dry Prairie
 • Estuarine
 • Freshwater Forested Wetlands
 • Marine
 • Hardwood Forested Uplands
 • Freshwater Non-Forested Wetland
 • Freshwater Aquatic
 • Cultural and Socio-economic
 • Working Lands
 • Landscape Connectivity
PFLCC Ecological Planning, Conservation Design, Research and Monitoring

- Identify Priority Resources
- Develop Conservation Targets
- Review/Validate Conservation Targets
- Identify and Implement Mgmt Strategies
- Identify Critical Areas
- Identify “gaps”
- Define Limiting Factors
- Monitor

- Measurable attribute
- Metric
- Target (endpoint)
Conservation targets are the measurable expressions of desired resource conditions. More specifically, conservation targets are the quantifiable biological, chemical, physical, or cultural attributes of a landscape that are important or valued to stakeholders identified during the biological planning process.

Conservation targets consist of three elements:
- *the measurable attribute*: quantifiable characteristic that informs about landscape conditions
- *the metric*: unit of measure
- *the target*: numerical endpoint of measurable attribute
Draft Criteria for Conservation Target Selection

<table>
<thead>
<tr>
<th>Criteria Category</th>
<th>Criteria Type</th>
<th>Criteria ID</th>
<th>Conservation Target Criterion</th>
<th>Additional Information</th>
<th>Instructions for Technical Experts</th>
</tr>
</thead>
<tbody>
<tr>
<td>Primary</td>
<td>Ecological</td>
<td>1</td>
<td>Represents important attributes of the priority resource(s) to which it belongs</td>
<td>Attributes may include the composition (e.g., biota), structure (e.g., spatial arrangement of biota, habitats, or other components), and/or function (e.g., ecosystem processes) of the priority resource(s).</td>
<td>Document how the attribute is related to the priority resource.</td>
</tr>
<tr>
<td></td>
<td>Ecological</td>
<td>2</td>
<td>The conservation target responds to environmental variation, caused by either anthropogenic or natural sources</td>
<td></td>
<td>Describe how the conservation target responds to environmental variation.</td>
</tr>
<tr>
<td></td>
<td>Practical</td>
<td>3</td>
<td>The conservation target responds to and allows for the evaluation of conservation and management actions</td>
<td>There are two primary types of conservation and management actions: 1) Habitat protection 2) Improving habitat quality. Conservation and management actions can fall into either or both of these categories for a given conservation target.</td>
<td>Document how the conservation target allows for the evaluation of conservation and management actions.</td>
</tr>
<tr>
<td>Non-primary – Measurement of the target</td>
<td>Practical</td>
<td>4</td>
<td>Evaluate jointly with Criteria 5: Is there is a target established?</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Practical</td>
<td>5</td>
<td>Evaluate jointly with Criteria 4: Can a target be developed?</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Practical</td>
<td>6</td>
<td>Can we measure the target directly?</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Practical</td>
<td>7</td>
<td>Evaluate jointly with Criteria 8: Are there existing standardized or comparable protocols (with Quality Control and Assurance) to measure the target?</td>
<td>The terms "standardized or comparable" refer to monitoring methods that result in conservation target measurements that are analogous or related across space and time.</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Practical</td>
<td>8</td>
<td>Evaluate jointly with Criteria 7: Can standardized or comparable protocols (with Quality Control and Assurance) be developed to measure the target?</td>
<td>The terms "standardized or comparable" refer to monitoring methods that result in conservation target measurements that are analogous or related across space and time.</td>
<td></td>
</tr>
<tr>
<td>Non-primary – Measurement of the target</td>
<td>Practical</td>
<td>9</td>
<td>Evaluate jointly with Criteria 10: A standardized or comparable monitoring network is already in place</td>
<td>The terms "standardized or comparable" refer to monitoring methods that result in conservation target measurements that are analogous or related across space and time.</td>
<td>Document the existing monitoring networks.</td>
</tr>
<tr>
<td></td>
<td>Practical</td>
<td>10</td>
<td>Evaluate jointly with Criteria 9: A standardized or comparable monitoring network is feasible to implement (i.e., in terms of cost and effort)</td>
<td>The terms "standardized or comparable" refer to monitoring methods that result in conservation target measurements that are analogous or related across space and time.</td>
<td>Document where new monitoring areas or networks are feasible to implement.</td>
</tr>
<tr>
<td>Social/Cultural/Political</td>
<td>Social/Cultural/Political</td>
<td>11</td>
<td>The conservation target has economic value</td>
<td>Economic value can exist in many forms that provide human benefit. Use values can be direct (removal products (timber, water)) or indirect (non-removal products (erosion protection)). Non-use values apply to features that benefit humans based on their existence or potential future value.</td>
<td></td>
</tr>
<tr>
<td>Social/Cultural/Political</td>
<td>Social/Cultural/Political</td>
<td>12</td>
<td>There is public support for the conservation target</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Social/Cultural/Political</td>
<td>Social/Cultural/Political</td>
<td>13</td>
<td>The conservation target can be linked to policy formation</td>
<td>Policy formation includes developing strategies and courses of action for resolving policy agenda items and creating solutions to adopt and implement into public policy (e.g., laws and institutional customs). Explain the economic value that the conservation target provides.</td>
<td></td>
</tr>
<tr>
<td>Social/Cultural/Political</td>
<td>Social/Cultural/Political</td>
<td>14</td>
<td>The conservation target can be met without lawmakers enacting new legislation</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Example Conservation Targets for Draft Priority Resources

<table>
<thead>
<tr>
<th>Priority resource</th>
<th>Measurable attribute</th>
<th>Conservation target</th>
</tr>
</thead>
<tbody>
<tr>
<td>High Pine and Scrub</td>
<td>Amount of regularly burned habitat patches</td>
<td>Number of patches, Hectares of burned patches</td>
</tr>
<tr>
<td>High Pine and Scrub</td>
<td>Gopher tortoise population status</td>
<td>Density - number of tortoises per hectare of habitat, Fitness - annual recruitment</td>
</tr>
<tr>
<td>High Pine and Scrub</td>
<td>Area of burned pyric communities</td>
<td>Acres burned at desired return interval</td>
</tr>
<tr>
<td>High Pine and Scrub</td>
<td>Bird habitat suitability</td>
<td>Index of habitat suitability for 3 bird species</td>
</tr>
<tr>
<td>High Pine and Scrub</td>
<td>Area of high-quality amphibian habitat</td>
<td>Hectares of Priority Amphibian and Reptile Conservation Areas</td>
</tr>
<tr>
<td>Pine Flatwoods and Dry Prairie</td>
<td>Area of quality habitat</td>
<td>Hectares</td>
</tr>
<tr>
<td>Pine Flatwoods and Dry Prairie</td>
<td>Gopher tortoise population status</td>
<td>Density - number of tortoises per hectare of habitat, Fitness - annual recruitment</td>
</tr>
<tr>
<td>Pine Flatwoods and Dry Prairie</td>
<td>Area of restored dry prairie</td>
<td>Hectares</td>
</tr>
<tr>
<td>Pine Flatwoods and Dry Prairie</td>
<td>Bird habitat suitability</td>
<td>Index of habitat suitability for 3 bird species</td>
</tr>
<tr>
<td>Pine Flatwoods and Dry Prairie</td>
<td>Area of pine habitat</td>
<td>Hectares of desired pine habitat</td>
</tr>
<tr>
<td>Pine Flatwoods and Dry Prairie</td>
<td>Area of high-quality amphibian habitat</td>
<td>Hectares of Priority Amphibian and Reptile Conservation Areas</td>
</tr>
<tr>
<td>Pine Flatwoods and Dry Prairie</td>
<td>Amount of regularly burned habitat patches</td>
<td>Number of patches, Hectares of burned patches</td>
</tr>
<tr>
<td>Freshwater Forested Wetlands</td>
<td>Population status of invasive plants/animals</td>
<td>Number of established populations, Population sizes, Distribution extent</td>
</tr>
<tr>
<td>Freshwater Forested Wetlands</td>
<td>Forest wetland bird population health</td>
<td>Index of population health</td>
</tr>
<tr>
<td>Freshwater Forested Wetlands</td>
<td>Forest wetland extent</td>
<td>Hectares</td>
</tr>
<tr>
<td>Freshwater Forested Wetlands</td>
<td>Forest wetland bird habitat suitability</td>
<td>Index of habitat suitability for 6 forested wetland bird species</td>
</tr>
<tr>
<td>Freshwater Forested Wetlands</td>
<td>Area of high-quality amphibian habitat</td>
<td>Hectares of Priority Amphibian and Reptile Conservation Areas</td>
</tr>
</tbody>
</table>
Examples of Conservation Targets

<table>
<thead>
<tr>
<th>Priority Resource</th>
<th>Measurable Attribute</th>
<th>Metric</th>
<th>Target</th>
</tr>
</thead>
<tbody>
<tr>
<td>Estuarine</td>
<td>Mangrove Extent</td>
<td>Hectares (ha)</td>
<td>Maintain 230,704 ha</td>
</tr>
<tr>
<td>Coastal Uplands</td>
<td>Amount of altered beach</td>
<td>Linear miles</td>
<td>Reduce amount of altered beach by 25% by 2030</td>
</tr>
<tr>
<td>Pine Flatwoods and Dry Prairie</td>
<td>Bird habitat suitability</td>
<td>Index of habitat suitability</td>
<td>Achieve and maintain “high” status on 80% of pine flatwoods</td>
</tr>
</tbody>
</table>
PFLCC Ecological Planning, Conservation Design, Research and Monitoring

- Identify Priority Resources
- Develop Conservation Targets
- Effectiveness in Representation
- Review/Validate Conservation Targets
- Identify “gaps”
- Identify and Implement Mgmt Strategies
- Monitor
- Identify Critical Areas
- Define Limiting Factors
Identify Priority Resources

Identify and Implement Mgmt Strategies

Identify Critical Areas

Define Limiting Factors

Monitor

Develop Conservation Targets

Review/Validate Conservation Targets

Identify “gaps”

“State of the State” Scorecard (have vs need)
ECOSYSTEM: freshwater marsh

Tidal & nontidal freshwater marshes

Nontidal freshwater marshes occur throughout the geography in poorly-drained depressions, including waterfowl impoundments. Tidal freshwater marshes occur along the upper tidal reaches of coastal rivers. Characterized by regular flooding and low-growing vegetation, freshwater marshes harbor diverse reptile and amphibian populations. They also support recreational hunting and traditional Gullah sweetgrass harvest.

Interpreting the score

Overall, this ecosystem scored a C. Piedmont areas scored the lowest, mostly driven by poor scores on riparian buffers, low road density, and aquatic connectivity. The North Coastal Plain scored the highest, mostly driven by better scores on the bird index, low road density, and aquatic connectivity. Much of this ecosystem is threatened by sea-level rise, requiring resilient protection and regulation to keep up with future marsh loss.

- Freshwater marsh extent
- Riparian buffers
- Structural connectivity
- Resilient biodiversity hotspots
- Freshwater marsh birds
- Impervious surface
- Low-road density
- Low-urban historic landscapes

Saltwater threatens managed marshes

A network of impoundments dots the Atlantic flyway, providing overwintering habitat for migratory waterfowl and up and down the East Coast. The influx of saltwater from intrusion and sea-level rise threatens these intensively-managed freshwater marshes, forcing coastal land managers to consider difficult tradeoffs—to repeatedly restore damaged dikes or seek new marsh habitat inland through restoration or protection.

ECOSYSTEM: estuarine

A slightly salty sanctuary

Estuaries are partially enclosed coastal water bodies where freshwater rivers meet the ocean. This system extends upstream into tidal flats and salt marshes, and seaward to the estuary mouth. Nutrient-rich sediments and brackish water make estuaries extremely productive fish and crab nurseries, while salt marshes filter water and buffer coastal storms.

Interpreting the score

Overall, this ecosystem scored a B. The Gulf Coastal Plain scored the highest, mostly driven by better scores on riparian buffers and impervious surface. The Central Coastal Plain scored the lowest, mostly driven by poor scores on riparian buffers, coastal condition, and fresh and saltwater connectivity. This ecosystem has one of the highest scores in this assessment, yet still highlights major opportunities for improving ecosystem health.

- Wetland patch size
- Riparian buffers
- Water vegetation edge
- Impervious surface
- Resilient biodiversity hotspots
- Freshwater marsh birds
- Coastal condition
- Fresh & saltwater connectivity

Building living shorelines

Coastal developers often stabilize retreating shorelines using seawalls and bulkheads. However, hard structures worsen coastal erosion and degrade estuarine habitat. Instead of concrete, living shorelines use wetland and aquatic plants, oyster reefs, wood, sand, and stone to protect the intertidal environment. This technique restores beautiful, functional estuaries benefiting people and wildlife. Plus, installation can be fun!
Identify Priority Resources

Monitor

Identify and Implement Mgmt Strategies

Identify Critical Areas

Define Limiting Factors

Identify “gaps”

Review/Validate Conservation Targets

Impact Assessments

PFLCC Ecological Planning, Conservation Design, Research and Monitoring
Identify Priority Resources

Monitor

Develop Conservation Targets

Identify and Implement Mgmt Strategies

Review/Validate Conservation Targets

Identify Critical Areas

Identify “gaps”

Define Limiting Factors

The “Where”
Using Existing Information, Models and Expert Opinion

Identify critical areas to achieve conservation targets
PFLCC Ecological Planning, Conservation Design, Research and Monitoring

- Identify Priority Resources
- Develop Conservation Targets
- Review/Validate Conservation Targets
- Identify “gaps”
- Identify Critical Areas
- Define Limiting Factors
- Identify and Implement Mgmt Strategies
- Monitor

The “What/How”
Identify Priority Resources

Identify and Implement Mgmt Strategies

Identify Critical Areas

Define Limiting Factors

Monitor

Develop Conservation Targets

Review/Validate Conservation Targets

Identify “gaps”

Progress towards Endpoints

PFLCC Ecological Planning, Conservation Design, Research and Monitoring
<table>
<thead>
<tr>
<th>HABITAT</th>
<th>INDICATOR</th>
<th>STATUS</th>
<th>SHORT-TERM TREND</th>
<th>LONG-TERM TREND</th>
<th>Comment</th>
</tr>
</thead>
<tbody>
<tr>
<td>CORAL</td>
<td>Percent cover</td>
<td>●</td>
<td>●</td>
<td>●</td>
<td>Martin to Dade Counties data limited in number and geographic representation; Keys region status and trends show significant degradation</td>
</tr>
<tr>
<td></td>
<td>Species richness</td>
<td>●</td>
<td>●</td>
<td>●</td>
<td>Martin to Dade Counties data limited in number and geographic representation; local & long-term degradation in Keys region</td>
</tr>
<tr>
<td></td>
<td>Bleaching & disease</td>
<td>●</td>
<td>?</td>
<td>●</td>
<td>Short-term data insufficient for trends, long-term data very limited but suggest degradation</td>
</tr>
<tr>
<td></td>
<td>Water quality</td>
<td>●</td>
<td>●</td>
<td>●</td>
<td>Status shows some degradation; short-term trends stable or show very slight trends; long-term data insufficient for trend determination</td>
</tr>
<tr>
<td>SEAGRASS</td>
<td>Areal coverage</td>
<td>●</td>
<td>●</td>
<td>●</td>
<td>Overall degradation with short-term localized increases; insufficient data for statewide status</td>
</tr>
<tr>
<td>SPRINGS</td>
<td>Flow</td>
<td>●</td>
<td>●</td>
<td>●</td>
<td>Results vary by spring & short-term trends are mixed; general long-term degradation from historical conditions</td>
</tr>
<tr>
<td></td>
<td>Water quality</td>
<td>●</td>
<td>●</td>
<td>●</td>
<td>Results vary by spring & parameter; some parameters show serious degradation; short-term trends mixed; general long-term degradation</td>
</tr>
<tr>
<td></td>
<td>Surrounding land use</td>
<td>●</td>
<td>●</td>
<td>●</td>
<td>Amount of urban, agricultural and other non-natural land cover is substantial. Trends not assessed but conversion of land not in conservation will continue.</td>
</tr>
<tr>
<td></td>
<td>Community structure</td>
<td>●</td>
<td>●</td>
<td>●</td>
<td>Use of community structure data for springs is limited due to naturally occurring conditions in springs.</td>
</tr>
<tr>
<td>SOFTWATER STREAMS</td>
<td>Flow</td>
<td>●</td>
<td>●</td>
<td>●</td>
<td>Results vary by stream; short & long-term trends are mixed; general long-term degradation from historical conditions</td>
</tr>
<tr>
<td></td>
<td>Water quality</td>
<td>●</td>
<td>●</td>
<td>●</td>
<td>Results vary by stream; short & long-term trends are mixed; general long-term degradation from historical conditions.</td>
</tr>
<tr>
<td></td>
<td>Surrounding land use</td>
<td>●</td>
<td>●</td>
<td>●</td>
<td>Amount of urban, agricultural and other non-natural land cover is substantial. Trends not assessed but conversion of land not in conservation will continue.</td>
</tr>
<tr>
<td></td>
<td>Community structure</td>
<td>●</td>
<td>●</td>
<td>●</td>
<td>Status shows some degradation; stable shows not assessed.</td>
</tr>
<tr>
<td>SANDHILL</td>
<td>Fire interval</td>
<td>●</td>
<td>●</td>
<td>●</td>
<td>Fair with some uncertainty. Fire status for this area is unknown</td>
</tr>
<tr>
<td></td>
<td>Landscape pattern</td>
<td>●</td>
<td>●</td>
<td>●</td>
<td>Severe habitat loss; trends not assessed for connectivity. Connectivity will continue to decrease as habitat loss continues.</td>
</tr>
<tr>
<td></td>
<td>Wildlife species</td>
<td>●</td>
<td>●</td>
<td>●</td>
<td>Fair and declining overall with some uncertainty.</td>
</tr>
<tr>
<td>SCRUB</td>
<td>Fire interval</td>
<td>●</td>
<td>●</td>
<td>●</td>
<td>Poor overall but improving in some areas; proportion of scrub is unknown</td>
</tr>
<tr>
<td></td>
<td>Landscape pattern</td>
<td>●</td>
<td>●</td>
<td>●</td>
<td>Substantial habitat loss from historical and current conditions. Area, patch size and connectivity will decrease significantly.</td>
</tr>
<tr>
<td></td>
<td>Wildlife species</td>
<td>●</td>
<td>●</td>
<td>●</td>
<td>Poor and declining overall with some uncertainty.</td>
</tr>
</tbody>
</table>
Identify Priority Resources

Develop Conservation Targets

Monitor

Identify and Implement Mgmt Strategies

Identify Critical Areas

Define Limiting Factors

Identify “gaps”

Effectiveness in Representation

Review/Validate Conservation Targets

“State of the State” Scorecard (have vs need)

Progress towards Endpoints

The “What/How”

The “Where”

Measurable attribute
Metric
Target (endpoint)

Effectiveness in Representation

Development, Climate change, Resources

Effectiveness in Representation
Finally – Why are you here today?

The goals of these workshops are to:

- Provide input/comments on Draft Priority Resources
- Provide list of subject matter experts for conservation target teams
<table>
<thead>
<tr>
<th>Habitat-based Priority Resources</th>
<th>“Other” Priority Resources</th>
</tr>
</thead>
<tbody>
<tr>
<td>High Pine & Scrub</td>
<td>Landscape Connectivity</td>
</tr>
<tr>
<td>Pine Flatwoods & Dry Prairie</td>
<td>Cultural and Socio-economic</td>
</tr>
<tr>
<td>Hardwood Forest</td>
<td>Working Lands</td>
</tr>
<tr>
<td>Coastal Uplands</td>
<td></td>
</tr>
<tr>
<td>Freshwater Non-forested Wetland</td>
<td></td>
</tr>
<tr>
<td>Freshwater Forested Wetland</td>
<td></td>
</tr>
<tr>
<td>Freshwater Aquatic</td>
<td></td>
</tr>
<tr>
<td>Estuarine</td>
<td></td>
</tr>
<tr>
<td>Marine</td>
<td></td>
</tr>
</tbody>
</table>
Next...

- More detailed information on each Priority Resource

- Input on each Priority Resource (*MeetingSphere*)

- Development of Conservation Target Technical Teams
 - *Lists of Experts for each Priority Resource* (*MeetingSphere*)
Questions ??